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The sustainability of agro-ecosystems depends on their ability

to deliver an entire package of multiple ecosystem services,

rather than provisioning services alone. New social and

ecological dimensions of agricultural management must be

explored in agricultural landscapes, to foster this ability. We

propose a social–ecological framework for the service-based

management of agro-ecosystems, specified through an explicit

and symmetric representation of the ecosystem and the social

system, and the dynamic links between them. It highlights how

management practices, with their multiple effects, could drive

the provision of multiple services. Based on this framework, we

have identified the design of collective multiservice

management as a key research issue. It requires innovations in

stakeholder organizations and tools to foster synergy between

ecosystem functioning and social dynamics, given the

complexity and uncertainties of ecological systems.
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Introduction
If we include forestry and inland aquatic systems, agri-

cultural systems cover about 40% of the continental

surface of the Earth. The sustainability of these produc-

tive systems requires the integration of an ecological

dimension. Approaches involving the management of

ecosystem services (ES) appear to be a powerful way

of developing sustainable agricultural systems. They also

add meaning to the concept of ‘agro-ecosystems’. How-

ever, using the ES concept is a major challenge, as it

introduces new ecological and social dimensions into the

design and management of agricultural systems.

Agricultural systems must do much more than simply

deliver provisioning services. They must also provide a

web of supporting and regulating services, such as soil

fertility, pest control and pollination [1,2]. In ES-based

management, farmers must consider to a much larger
www.sciencedirect.com
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extent than they ever have before, the effects of manage-

ment practices on complex biophysical systems. Simul-

taneous ES management is challenging, because of the

multiple positive (synergies), negative (tradeoffs) and

non-linear relationships between services and the multi-

ple levels at which management can be applied. Man-

agement greatly affect the synergies and tradeoffs

between services and the strength of the relationships

between them, in agro-ecosystems [3��]. The effect of

crop protection on the apparent relationship between

crop yield and natural pest control (two functionally

linked services) depends on whether natural pest control

is favored (in which case, the relationship is positive) or

heavy use is made of nonspecific pesticides with adverse

effects not only on pests, but also on their enemies

(resulting in a negative relationship). Furthermore, agri-

cultural practices acting on two services that are not

functionally linked may create apparent relationships

between these services. For example, fertilizer use

increases crop yield but decreases water quality, creating

a negative correlation between these services [3��].

Use of the ES concept may also strengthen and modify

the social interactions through which farmers develop

their activities. Agricultural management plays a key role

in the delivery of ES [4��,5], but farmers are only one

group of stakeholders producing or benefiting from ES.

Different stakeholders may have different perceptions of

services, as exemplified by the work of Hauck et al. [6].

Hauck et al. showed that the relationship between timber

production and other ES was perceived as negative by

some stakeholders (from the nature conservation and

forestry sector), but synergic by others (from the agricul-

ture sector). By considering ES, new social interactions

can be established, resulting in new management choices

modifying the value of services and the relationships

between them.

A more integrated assessment of ecological and social

issues is therefore required when developing sustainable

agricultural systems based on ES management. Agro-

ecosystem services have been increasingly studied re-

cently, but with a focus on biotechnical aspects and single

services. Most studies of multiple services published to

date have been based on mapping and scenario analyses

at the regional level, using land use/land cover indices,

and including the agro-ecosystem categories, such as

forests or orchards, as proxies [7,8]. Other studies have

compared broad classes of agricultural systems, such as

organic and conventional systems, over a narrower range

of services, generally focusing on pest control [9]. Many

studies have considered the relationship between specific

agricultural practices, such as crop rotation or irrigation,

and ES. However, most dealt with single services, rather

than with bundles of services [10]. The rare exceptions

include an examination of tradeoffs between several

services in row-crop agriculture, along a gradient of
www.sciencedirect.com 
cropping system intensification [11�]. Most approaches

to social interactions between stakeholders with different

perceptions of services and their interactions due to

differences in interest and knowledge [12] have not

involved ecological or agronomic approaches.

Implementing multiservice management in agricultural

systems requires a conceptual framework exploring social

and ecological interactions. We used existing social–eco-

logical views to develop an agro-ecosystem-specific

scheme with dynamic connections between social and

ecological systems. We use this framework to discuss the

essential issues that must be addressed by the research

community to foster the collective management of mul-

tiple agro-ecosystem services.

The need for an integrated social–ecological
framework for agro-ecosystems
We propose a social–ecological conceptual framework

(CF) addressing the issue of multiservice management

in agro-ecosystems in Figure 1. This CF is consistent

with previous frameworks consisting of a social system

and an ecosystem connected by multiple ES [13–16],

including the CF of the recent Intergovernmental Plat-

form on Biodiversity and Ecosystem Services (IBPES)

[17��]. ES are thus seen as an output of the ecosystem

used and transformed by the social system. However,

our CF differs from its predecessors in several ways.

First, it targets the agro-ecosystem, highlighting its

specific features in terms of both the ecosystem and

the social system. Second, it aims to identify the chal-

lenges involved in using farming practices to manage

multiple services. This approach restricts the CF to the

levels of organization of this management. It also

requires symmetric representations of the ecosystem

and the social system, to clarify the links between them.

We used the same template to depict the ecosystem and

the social system, and their interconnected  structural

and functional components. This concern for symmetry

responds to the criticism of Binder et al. [18��] in their

comparative analysis of social–ecological CF. These

authors found that social and ecological components

were rarely treated equally profoundly and that there

was not always reciprocity between the two systems.

These aspects limit the implementation of multiservice

management.

The structural components of the ecosystem are its

physical, geochemical (soil, water, air) and biological

compartments. The biological compartment includes

both domesticated and wild biodiversity. The functional

components are biophysical processes (soil, water and

nutrient cycles) and biological processes, involving indi-

viduals and populations, and extending to metacommu-

nity dynamics. The structural component of the social

system takes into account the diversity of individual

stakeholders (e.g. farmers, foresters), organizations and
Current Opinion in Environmental Sustainability 2015, 14:68–75
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Figure 1
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Agro-ecosystem management for the delivery of multiple services on the basis of dynamic interplay between the ecosystem and the social

system. The conceptual framework of the figure applies to the agricultural territory. In the ‘Ecosystem’ and ‘Social system’ boxes, the broad

arrows represent the interplay of structure and processes. In the structural part of the ‘Social system’, sociotechnical networks and collectives

include cooperatives, farmers’ associations, consumer groups, and environmental associations. In the processes of the same box, ‘consultation’

denotes consultation between farmers, environmentalists, and other stakeholders in the territory. ‘Qualification’ refers to product certification or

the valorization of resources, such as local breeds or varieties, through collective initiatives by farmers. ‘Coordination’ targets biodiversity or pest

management, landscape planning or agro-ecosystem restoration (in the ‘Agro-ecosystem management’ box). Arrows Ie and Is and a to d are

described in the main text. The text in the boxes is illustrative, not exhaustive.
institutions, making it possible to consider the diversity of

the beneficiaries of the bundle of interacting services [16].

The functional component corresponds to diverse socio-

economic processes (see Figure 1 for examples). In these

respects, our CF more closely resembles that of Collins

et al. [14] than those of Reyers et al. [16] and Diaz et al.
[17��], who broke the social system down to highlight

particularly important dimensions, such as human
Current Opinion in Environmental Sustainability 2015, 14:68–75 
wellbeing or institutions. However, Collins et al. [14]

did not include such structural and functional elements

in their CF. Instead, they presented two categories,

‘human behavior’ and ‘human outcomes’.

The other key element of this management-orientated CF

is its ‘Agro-ecosystem management’ box, an outcome of

the social system. Management targets — the landscape,
www.sciencedirect.com
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farming systems, semi-natural habitats, and natural

resources — are highlighted in this box. This box is not

the only outcome of the social system, but management is

highlighted here because it can drive ecosystem function-

ing directly. This representation of agro-ecosystem man-

agement provides much stronger specifications than

previous CFs, which consider management globally, over

a wide range of scales. Previous CFs have used a general

terminology for management. For example, the IPBES CF

uses terms such as ‘Anthropogenic assets’, ‘Governance’

and ‘Anthropogenic drivers’ [17��].

A focus on agro-ecosystem management defines the

perimeter of the CF as the agricultural territory, within

which individual and collective management actions

are organized and implemented. The CF can be scaled

within this perimeter, from very local (e.g. the farm

plot) to regional scales (e.g. the water basin). Under

these conditions, the ecosystem interacts with adjacent

ecosystems, because there are spatial flows of energy,

materials and organisms across ecosystem boundaries. It

is also influenced by climate patterns and extreme

events. Similarly, the social system interacts with other

social systems and inclusive social systems, such as

states, federations of nation-states or international bod-

ies (e.g. intergovernmental organizations, multinational

companies) through public policies, regulations, or

global marketing, for example. More generally, the

social–ecological system of the territory is embedded

in a series of nested social–ecological systems, in accor-

dance with the multilevel nature of ES stewardship

[17��,19–21]. This series includes reciprocal relation-

ships between upper and lower levels and interactions

between adjacent systems, as predicted by hierarchy

theory [22]. However, it also includes relationships

crossing hierarchical levels, such as the direct influence

of national agri-environmental measures on local farm-

ing systems.

The CF is dynamic, with successive loops. Ecosystem

structure and processes interact, under the direct influ-

ence of management (Arrow a), to provide multiple ES

(Arrow b). The social system makes use of service

metrics, various perceptions and multiple value systems

to evaluate ES (Arrow c from the ‘Social system’ box to

the ‘Multiple services’ box). These value systems un-

derlie the benefits of ES to stakeholders and they may

conflict [17��]. A network of interacting and iterative

social processes can be used to define ES objectives

(Arrow c from the ‘Multiple services’ box to the ‘Social

system’ box) and to identify series of management

actions for achieving these objectives (Arrow d).

Among these processes, consultation and coordination

should minimize the conflict between the values of

different stakeholders. These processes require a scien-

tific knowledge of synergies and tradeoffs between

services.
www.sciencedirect.com 
Finally, agro-ecosystem management, at the core of the

CF shown in Figure 1, has multiple effects, consistent

with the multiple-service concept. For example, sowing

mixtures of plants directly modifies the structure of the

biological compartment (domesticated biodiversity,

Figure 1a), with multiple, cascading effects. These

effects concern other structural compartments (soil),

and various processes, such as competition for light,

water or nutrients, and the dynamics of pests and dis-

eases, through changes to the functioning and architec-

ture of food webs and ecological networks [23,24].

These effects may generate synergy between provision-

ing and supporting or regulating services. Schipanski

et al. [25] carried out an experimental study on a three-

year soybean–wheat–corn rotation with and without

cover crops. They estimated that cover crops could

increase the value of eight of the 11 ES studied (includ-

ing erosion control, soil carbon storage, and NO3 reten-

tion), with no negative impact on crop yield. Kragt and

Robertson [26] simulated technical strategies in a bio-

physical farm-systems model. They showed that in-

creasing the retention of crop residues in Australian

mixed crop-livestock farming would both increase pro-

duction and improve the provision of several ES:

groundcover, soil carbon and nitrogen supply. The

CF shown in Figure 1 addresses the consequences of

a particular intervention for the total bundle of ES. Very

few CF have dealt with this issue [16].

We present a re-analysis of two case studies with this CF

in Box 1 and Box 2.

New stakeholder organizations and
instruments of coordination are required for
the implementation of multiservice
management in agricultural territories
The CF raises many key research issues. We focus here

on two issues relating to the collective dimension of

management in an agricultural territory, the target level

of the CF. Collective management is the key to achieving

acceptable tradeoffs between multiple ES, because it

both minimizes value conflicts between stakeholders

and operates on an ecological landscape, the level deci-

sive for service provision and relationships [35]. It raises

questions about the most effective structures and pro-

cesses in the social system (Figure 1). New organizations

promoting long-term coordinated, collective action are

required, together with new instruments facilitating co-

ordination and innovation processes. We need to deter-

mine what knowledge is required for ecological dynamics

and the effect of management practices, and the form of

that knowledge. We also need to work out how to deal

with the complexity and uncertainties of the ecological

systems to be managed.

In agricultural territories, farmers and other stakeholders

are involved in agricultural organizations (cooperatives,
Current Opinion in Environmental Sustainability 2015, 14:68–75
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Box 1 Certification processes in the coffee value chain in Central

America as a means of fostering the provision of ES through

agricultural management.

Product certification is one of the most promising instruments for

fostering the provision of ES through agricultural management. The

review by Soto and Le Coq [27] of the development of the certified

coffee market in Central America provides an illustrative example.

The organic and Fair Trade labels were first developed in the early

1990s, and other labels, such as Rainforest Alliance, Starbucks

CAFE practices and Utz Certified, were created in the late 1990s.

Some of these labels were established through consultation with

organic farmers and consumer groups (‘Social system’ box). The

coffee crisis of the 1990s gave a new impetus to all coffee

certification systems, due to the higher prices and lower perceived

risk (Arrow Is). The standards developed aim to achieve a balance

between the provision of multiple ES (‘Multiple services’ box) and

farmers’ access and profitability; this corresponds to the perception

of consumers (Arrow c). However, this balance is variable. Some

labels, such as CAFE practices, focus on coffee quality, both a

service and a means of increasing producer revenues, whereas

others, such as Rainforest Alliance, focus on so-called ‘environ-

mental services’, such as protecting endangered species and habitat

provision. Technical support design (‘Social system’ box) differs

between these standards, from limited use of scientific data relating

to ES in the initial versions of the organic standards, to a sound

scientific basis. The Smithsonian Bird Friendly certification scheme

was initially developed to provide a high-quality habitat for

neotropical migratory birds. It was based on published research data

on this topic. Given the multifunctional role of shade trees in tropical

agroforestry landscapes [28], shade structure and management are

key components of the cropping systems implemented (Arrow d and

‘Agro-ecosystem management’ box). Very specific standards, such

as Smithsonian Bird Friendly certification, define the density and

height of shade trees and a minimum shade percentage. Some

standards, such as the Rainforest Alliance, were adapted to local

biophysical and socio-economic conditions through consulting

processes involving farmers, cooperative technicians, extension

agents and the academic sector (‘Social system’ box). Local relays

are involved in compliance control systems for certification, reducing

costs by overcoming the need for international inspectors or

governmental certification agencies. Collective certification for small

producer groups has also been developed, with local inspectors and

agencies (‘Social system’ box).

Studies of ES provision on certified coffee farms have shown positive

impacts of organic, Smithsonian Bird Friendly and Rainforest Alliance

certification (Arrows a and b). Biodiversity and the abundance of

natural enemies of pests (‘Ecosystem’ box) used as indicators of

pest control (in ‘Multiple services’ box), were greater on certified

coffee farms than on conventional farms. The certified farms

generally had a more diverse ecosystem, with more complex shade

structures. Water conservation (‘Multiple services’ box) was im-

proved by Rainforest Alliance certification. Several indicators of soil

biological and chemical components and functions, such as organic

matter, microbial biomass, earthworms and mycorrhizae, together

with P, Ca and K contents (‘Ecosystem’ box), suggested that soil

quality (‘Multiple services’ box) was better on organic than on

conventional farms. Coffee productivity (‘Multiple services’ box) was

lower on organic farms. More comparative studies are required, with

greater harmonization between studies. To this end, the ISEAL

alliance has proposed a code of good practice (http://www.

isealalliance.org/our-work/defining-credibility/

codes-of-good-practice/impacts-code; Arrow c—new loop in the

CF).

The certification processes in the coffee value chain in Central

America seem to be promoting the provision of ES through the

agricultural management of coffee systems. However, there is still

room for improvement (new loops in the CF), by reducing the cost of

compliance control structures and increasing the remuneration of

producers, to distribute the ‘premium’ more widely along the

commodity chain (process in the ‘Social system’ box). Better

technical knowledge is required to improve the provision of ES,

including crop productivity (especially for organic farms). Further-

more, the processes focus on the farm scale and the management of

shade, which is operational at this scale. However, we will need to

focus on landscape planning and management (‘Agro-ecosystem

management’ box) and encourage coordination between multiple

actors within a landscape (‘Social system’ box), to take advantage of

the effects of landscape structure and processes on biodiversity and

the provision of ES in these tropical agroforestry systems [29].

Current Opinion in Environmental Sustainability 2015, 14:68–75 
networks, supply chains, among others) and resource

management bodies (regional nature parks, biodiversity

conservation associations, among others). These organiza-

tions have proved effective for coordinating management

to achieve a particular target. For example, farmers’

organizations have been involved in developing area-

wide pest management, demonstrating that the regional

coordination of integrated pest management actions can

enhance pest management area-wide, for longer periods

than would be possible with an uncoordinated field-by-

field approach [36]. Another example is provided by

cooperation for wildfire risk management, which involves

various organizations, including local collaborative groups

funded by programs for reducing hazardous fuel use and

restoring the ecosystem in forested areas of the USA [37].

However, few studies have demonstrated successful ter-

ritorial coordination for the management of multiple ES.

This raises questions about whether the existing orga-

nizations have the ‘right’ configuration for this form of

management. For example, reconnecting the C and N

cycles by integrating livestock and cropping systems

would increase synergy between food production and

various ES [38,39]. It remains unclear which type of

organization would be most likely to encourage local

interactions between specialist farms for this purpose.

However, recent management science studies have

shown the collective design of innovative management

strategies by a wide range of stakeholders in an agricul-

tural territory to be possible (example in Box 2).

Most of the methods developed to date to facilitate the

coordinated management of shared resources or ecologi-

cal systems have used models and/or scenarios to high-

light and guide management choices, in participatory

approaches. Such methods have proved effective, as

reported for participatory agent-based modeling process-

es for resolving conflicts relating to forest management

between villagers, foresters and park rangers [40]. These

methods are particularly relevant when dealing with

asymmetries between stakeholders in power, knowledge

and the relative status of producers and beneficiaries of

ES [41�]. However, they are not entirely relevant for these

stakeholders, as they provide insufficient insight into the

function of the ecosystem for the development of learning
www.sciencedirect.com
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Box 2 Planned collective design for the management of ES in a

territory of high environmental value in the cereal-growing area

south east of Niort (France).

In this cereal-growing area, two groups of stakeholders (‘Social

system’ box) came together in 2010 for a management project

aiming to reconcile agricultural production and biodiversity (Arrow

c): ecologists working to protect the birds of the area, such as the

little bustard, and a small agricultural cooperative wishing to

support cereal production and a return to livestock production,

whilst respecting biodiversity and protecting water quality. Both

groups were aware of the limitations of agri-environmental

schemes (Arrow Is), which had decreased the impact of agriculture

on biodiversity [30], but were based on short-term individual

contracts not very compatible with the ecological scales operating

within a territory [31]. They therefore tried to develop other

strategies. The ecologists suggested the introduction of alfalfa into

crop rotations, to create favorable habitats for insects (including

the crickets eaten by the little bustard, in particular), together with

refuge zones for birds (Arrow d and ‘Agro-ecosystem manage-

ment’ box) [32].

The cooperative rapidly took up the idea of developing alfalfa use to

diversify crop rotation, to create exchanges between cereal

producers and livestock farmers, and to contribute to various ES

(‘Multiple services’ box) by limiting the erosion of the most fragile

soils through greater water retention or lower levels of nitrogen

fertilizer use (Arrow c). Given the multiple benefits of alfalfa, and to

reconcile the divergent views of the stakeholders, the project leaders

initiated a collective design approach supervised by management

science researchers. Two water companies, agronomists, extension

agents and diverse local government representatives joined the

project. The researchers shared their knowledge on alfalfa with the

other stakeholders during a collective design workshop (‘Social

System’ box).

This workshop explored the bundles of services potentially

produced for each of the possible configurations of the agro-

ecosystem (‘Multiple services’ box). Alfalfa was thus considered as

an element of the landscape infrastructure beneficial for bundles of

services. The various stakeholders were able to identify intermedi-

ate pathways, between the intensive management of alfalfa, which

was detrimental to biodiversity, and management systems sig-

nificantly decreasing production [33]. For example, reasonable

levels of production can be achieved by mowing at appropriate

dates to control weeds thereby limiting pesticide use and protecting

insects. This exploration revealed the importance of the parameters

of collective management, including the coordination of mowing

dates and the concentration of plots around reservoirs or in zones in

which soils are susceptible to leaching, to improve water quality

(Arrow d).

Following the design workshop, the project leaders set up a

research-action project funded by local authorities, to facilitate the

establishment of an alfalfa sector through scientific knowledge

generation (‘Social System’ box). In 2014, 150 ha of alfalfa were

planted, for forage or seed production. The cooperative decided not

to increase the area under alfalfa too rapidly and not to impose plot

location constraints on farmers, despite the ecologists’ recommen-

dations based on metapopulation models for crickets. According to

the cooperative, there is a need to identify suitable markets for this

sector and ways of dealing with climatic events likely to decrease

yields, and the difficulties of achieving consistent forage quality (new

loops in the CF).

Unanswered questions remain about how to maintain this design

process in the long term and the nature of the modes of governance

required (new loops in the CF). However, this example shows that, in

situations in which collective design is required but the stakeholders

are initially in conflict, collective innovation and cooperation should

be promoted. The experimental method used here aimed to ensure

the use of the information provided by the stakeholders to explore

previously unimagined but desirable pathways in a collaborative

manner, rather than addressing the constraints imposed by different

stakeholders individually and negotiating on the basis of supposedly

known values [34].

www.sciencedirect.com 
processes and skills for managing ES in the long term, in

different situations. We need to develop practical instru-

ments combining scientific knowledge about potential

synergies and tradeoffs between ES with the objectives,

perceptions, values and management skills of stake-

holders. No models of multiple agro-ecosystem services

explicitly including management option effects are avail-

able [42]. Considerable progress in visualizing and graph-

ically representing observed and modeled data is also

required, these aspects being particularly important at the

interface between science and policy-making. Improve-

ments will be particularly crucial for visualizing uncer-

tainty and decreasing the dimensionality of information

displays [43]. Furthermore, tradeoff analyses have gener-

ally been exploratory, using graphics and multivariate

analyses, as exemplified by Raudsepp-Hearne et al. [8]

and Lavorel et al. [44]. Complementary multi-objective

evaluation and optimization methods should be more

widely used. These methods are particularly useful for

designing management options in the context of agro-

ecosystem services [45,46�,47]. Finally, we need to de-

termine how these practical instruments could be used

within stakeholder groups in agricultural areas (farmers,

foresters, local companies, local environmental associa-

tions, basin agencies, among others) to foster cooperation

in management strategy design and implementation.

Conclusions
ES-based management is a promising way of ensuring the

sustainability of agricultural systems. It is particularly

challenging, because of the multiple relationships be-

tween services, the major impact of agricultural manage-

ment on these links and the diversity of the actors

involved. Appropriate dynamic social–ecological

approaches could shed light on ways of achieving agro-

ecosystem service-based management. The research

community must carry out two essential tasks to facilitate

the implementation of ES-based agro-ecosystem man-

agement in agricultural territories. First, it must design

new stakeholder organizations for coordinated manage-

ment planning. Second, it must identify and build practi-

cal instruments for use in participatory approaches by

these groups. These instruments must make it possible to

share, visualize and use for diagnostic and prospective

studies, both the perceptions of the various stakeholders

and the available scientific ecological knowledge, to foster

synergy between ecosystem functioning and social dy-

namics.
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